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Classical Problems in Distributed Systems
• Time ordering and clock synchronization (today) 

Next few classes: 

• Leader election 

• Mutual exclusion 

• Distributed transactions 

• Deadlock detection 

• CAP Theorem
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Clock Synchronization
• Time in unambiguous in centralized systems 

• System clock keeps time, all entities use this for time 

• Distributed systems: each node has own system clock 

• Crystal-based clocks are less accurate (1 part in million) 

• Problem: An event that occurred after another may be assigned an earlier 
time
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Physical Clocks: A Primer
• How do you tell time — use astronomical metrics (solar day) 

• Accurate clocks are atomic oscillators (one part in 1013) 
• Coordinated universal time (UTC) – international standard based on atomic time 

• Add leap seconds to be consistent with astronomical time 

• UTC broadcast on radio (satellite and earth) 

• Receivers accurate to 0.1 – 10 ms 

• Most clocks are less accurate (e.g., mechanical watches) 

• Computers use crystal-based blocks (one part in million)  

• Results in clock drift 

• Need to synchronize machines with a master or with one another

3

CS 677: Distributed and OS Lec. 12

Clock Synchronization
• Each clock has a maximum drift rate ρ

• 1-ρ <= dC/dt <= 1+ρ

• Two clocks may drift by 2ρ Δt  in time Δt 

• To limit drift to δ => resynchronize every δ/2ρ seconds
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Cristian’s Algorithm
• Synchronize machines to a time server with a 

UTC receiver 

• Machine P requests time from server every 
δ/2ρ seconds 

• Receives time t from server, P sets clock to t+treply 
where treply is the time to send reply to P 

• Use (treq+treply)/2 as an estimate of treply 

• Improve accuracy by making a series of 
measurements
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Berkeley Algorithm
• Used in systems without UTC receiver 

• Keep clocks synchronized with one another  

• One computer is coordinator, other are workers 

• Master periodically polls slaves for their times 

• Average times and return differences to slaves 

• Communication delays compensated as in Cristian’s algo 

• Failure of master => election of a new master
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Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values 

b) The machines answer 

c) The time daemon tells everyone how to adjust their clock
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Distributed Approaches
• Both approaches studied thus far are centralized 

• Decentralized algorithms: use resync intervals 

• Broadcast time at the start of the interval 

• Collect all other broadcast that arrive in a period S 

• Use average value of all reported times 

• Can throw away few highest and lowest values 

• Approaches in use today 

• rdate: synchronizes a machine with a specified machine 

• Network Time Protocol (NTP) - discussed in next slide 

• Uses advanced techniques for accuracies of 1-50 ms
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Network Time Protocol
• Widely used standard  - based on Cristian’s algo 

• Uses eight pairs of  delays from A to B and B to A. 

• Hierarchical – uses notion of stratum 

• Clock can not go backward 
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Global Positioning System
• Computing a position in a two-dimensional space.
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Global Positioning System
• Real world facts that complicate GPS 

• It takes a while before data on a satellite’s position 
reaches the receiver. 

• The receiver’s clock is generally not in synch with 
that of a satellite.
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GPS Basics
• Dr – deviation of receiver from actual time 

• Beacon with timestamp Ti received at Tnow 

• Delay  Di = (Tnow – Ti) + Dr 

• Distance di  = c ( Tnow- Ti) 

• Also  di = sqrt[ (xi-xr)2 + (yi-yr)2 + (zi-zr)2 ] 

• Four unknowns, need 4 satellites.
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Wireless Syncronization
•Reference broadcast sync (RBS): receivers synchronize with one another 
using RB server 
•Mutual offset = Ti,s- Tj,s     (can average over multiple readings)
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Logical Clocks
• For many problems, internal consistency of clocks is important 

• Absolute time is less important 

• Use logical clocks 

• Key idea: 

• Clock synchronization need not be absolute 

• If two machines do not interact, no need to synchronize them 

• More importantly, processes need to agree on the order in which events 
occur rather than the time at which they occurred
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Event Ordering
• Problem: define a total ordering of all events that occur in a system 

• Events in a single processor machine are totally ordered 

• In a distributed system: 

• No global clock, local clocks may be unsynchronized 

• Can not order events on different machines using local times 

• Key idea [Lamport ] 

• Processes exchange messages 

• Message must be sent before received 

• Send/receive used to order events (and synchronize clocks)
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Happened Before Relation
• If A and B are events in the same process and A executed before B, then  A -> 

B 

• If A represents sending of a message and B is the receipt of this message, 
then A -> B 

• Relation is transitive:  A -> B and B -> C  => A -> C 

• Relation is undefined across processes that do not exchange messages 

• Partial ordering on events
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Event Ordering Using HB
• Goal: define the notion of time of an event such that 

• If A-> B then C(A) < C(B) 

• If  A and B are concurrent, then C(A)  <, = or > C(B) 

• Solution:  

• Each processor maintains a logical clock  LCi 

• Whenever an event occurs locally at I, LCi = LCi+1 

• When i sends message to j, piggyback Lci 

• When  j receives message from I 

• If LCj < LCi then LCj = LCi +1 else do nothing 

• Claim: this algorithm meets the above goals
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Lamport’s Logical Clocks
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Total Order
• Create total order by attaching process number to an event.  If time stamps 

match, use process # to order
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Example: Totally-Ordered Multicasting
• Updating a replicated database and leaving it in an inconsistent state.
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Algorithm

● Totally ordered multicasting for banking example 
● Update is timestamped with sender’s logical time 

● Update message is multicast (including to sender) 

● When message is received 
! It is put into local queue 
! Ordered according to timestamp, 
! Multicast acknowledgement 

! Message is delivered 
! It is at the head of the queue 
! IT has been acknowledged by all processes 
! P_i sends ACK to P_j if   
– P_i has not made a request 
– P_i update has been processed and P_i’s ID > P_j’s Id
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Causality
• Lamport’s logical clocks 

• If  A -> B then C(A) < C(B) 

• Reverse is not true!! 

• Nothing can be  said about events by comparing time-stamps! 

• If C(A) < C(B), then ?? 

• Need to maintain causality 

• If a -> b then a is casually related to b 

• Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n) 

• Capture causal relationships between groups of processes 

• Need a time-stamping mechanism such that: 

• If T(A) < T(B) then A should have causally preceded B
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Vector Clocks
• Each process i maintains a vector Vi 

• Vi[i] : number of events that have occurred at I 

• Vi[j] : number of events I knows have occurred at process j 

• Update vector clocks as follows 

• Local event: increment Vi[I] 

• Send a message :piggyback entire vector V 

• Receipt of a message: Vj[k] = max( Vj[k],Vi[k] ) 

• Receiver is told about how many events the sender knows occurred at another process k 

• Also Vj[j] = Vj[j]+1 

• Exercise: prove that if V(A)<V(B), then A causally precedes B and the other way around.
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Enforcing Causal Communication
• Figure 6-13. Enforcing causal communication.
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Global State
• Global state of a distributed system 

• Local state of each process 

• Messages sent but not received (state of the queues) 

• Many applications need to know the state of the system 

• Failure recovery, distributed deadlock detection 

• Problem: how can you figure out the state of a distributed system? 

• Each process is independent 

• No global clock or synchronization 

• Distributed snapshot: a consistent global state
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Global State (1)
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Distributed Snapshot Algorithm
• Assume each process communicates with another process using unidirectional 

point-to-point channels (e.g, TCP connections) 

• Any process can initiate the algorithm 

• Checkpoint local state  

• Send marker on every outgoing channel 

• On receiving a marker 

• Checkpoint state if first marker and send marker on outgoing channels, save 
messages on all other channels until: 

• Subsequent marker on a channel: stop saving state for that channel
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Distributed Snapshot
• A process finishes when 

• It receives a marker on each incoming channel and processes them all 

• State: local state plus state of all channels 

• Send state to initiator 

• Any process can initiate snapshot 

• Multiple snapshots may be in progress  

• Each is separate, and each is distinguished by tagging the marker with the 
initiator ID (and sequence number)
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Snapshot Algorithm Example
a) Organization of a process and channels for a distributed snapshot
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Snapshot Algorithm Example
b) Process Q receives a marker for the first time and records its local state 

c) Q records all incoming message 

d) Q receives a marker for its incoming channel and finishes recording the state of the incoming channel

30



CS 677: Distributed and OS Lec. 12

Termination Detection
• Detecting the end of a distributed computation 

• Notation: let sender be predecessor, receiver be successor 

• Two types of markers: Done and Continue 

• After finishing its part of the snapshot, process Q sends a Done or a Continue to its predecessor 

• Send a Done only when 

– All of Q’s successors send a Done 

– Q has not received any message since it check-pointed its local state and received a marker on all incoming 
channels 

– Else send a Continue 

• Computation has terminated if the initiator receives Done messages from everyone
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